
 

 

Least Squares Method  
 

We are considering М – a set of functions  given as a table in N – points (not 

necessarily different) and – polynomials of the n-th exponent of variable x. 

We will regard n << N. As a measure of the proximity between the function from 

set М and  we will utilize the values of the following function: 
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where  are the coefficients of the polynomial , а . The polynomial 

P
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*, which has coefficients  minimize the function , is called 

polynomial with closes proximity for least square method (LSM) and can be utilized as 

an approximation of  (especially when N is much bigger than n). Coefficients 

 are a solution to the following linear algebraic system (which has a symmetric 

matrix and for its solution can be utilized square root method): 
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Analogically with least square method for approximation of the functions given in 

a table the following concept is introduced: “solution using least square method" for 

predetermined systems of linear algebraic equations (the number of equations m is 

larger than the number of unknowns n):  

If the predetermined system is of the following type: bAx = :  
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     for   m > n. 

A solution found using LSM is n – the point , which minimizes the 

expression: 
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The point which minimizes this function is a solution to the quadratic system 

which we get when we multiply the left side of the output system with АТ :ATAx = ATb, 

which is also called system symmetrization. 

 

Example 1. Find  and  using LSM for the function  given in the table: *
1P *
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Solution:   

To find  we construct a table using the values of and find the 

necessary totals: 
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i ix  iy  2

ix  
ii yx

1 0 1 0 0 
2 1 2 1 2 
3 2 1 4 2 
4 3 0 9 0 
5 4 4 16 16 
∑ 10 8 30 20 

  
Then if  coefficients  and  are a solution to the system: *
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the solutions to which are  
5
4*

0 =a  and 
5
2*

1 =a   ⇒  
5
4

5
2*

1 += xP  . 

To find the polynomial of degree two  we add three more columns to the table 
above:  : 
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ix y  x  x x ii yx ixy  i  i 2

i
3
i  4

i  2
i

1 0 1 0 0 0 0 0 
2 1 2 1 1 1 2 2 
3 2 1 4 8 16 2 4 
4 3 0 9 27 81 0 0 
5 4 4 16 64 256 16 64 
∑ 10 8 30 100 354 20 70 

   

So the system is reduced to the form 

7035410030 210 =++ aaa

=1a =2a 65714,131429,12 +− xxP .  
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The solutions of the system (with an accuracy of up to five digits) are: =*a 1,65714; 

-1,31429; 0,42857 and 42857,0)(* =x

0

* * 2

 

Example 2. Solve the predetermined system using LSM 
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Solution: 

The matrix   and the vector  . Then  ⎟⎟
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And we get a symmetrized system: 533 yx
11311

=+
=+ yx

. 

After subtracting the second equation from the first one we have  ⇒ 68 =x
4
3

=x  

and after the substitution 
4
953 −=y   ⇒  

12
11

=y  , i.e. the solutions of the predetermined 

system are 
4
3* =x  and 

12
11* =y . 
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